jueves, 27 de noviembre de 2014

4.1.3. Método para resolución de ecuaciones lineales método gráfico, igualación, sustitución, eliminación.

4.1.3. Método para resolución de ecuaciones lineales método gráfico, igualación, sustitución, eliminación.

Sustitución

El método de sustitución consiste en despejar en una de las ecuaciones cualquier incógnita, preferiblemente la que tenga menor coeficiente y a continuación sustituirla en otra ecuación por su valor.
En caso de sistemas con más de dos incógnitas, la seleccionada debe ser sustituida por su valor equivalente en todas las ecuaciones excepto en la que la hemos despejado. En ese instante, tendremos un sistema con una ecuación y una incógnita menos que el inicial, en el que podemos seguir aplicando este método reiteradamente. Por ejemplo, supongamos que queremos resolver por sustitución este sistema:

   \left \{
      \begin{matrix}
         3x & +  y & = & 22 \\
         4x & - 3y & = & -1
      \end{matrix}
   \right .
En la primera ecuación, seleccionamos la incógnita  y  por ser la de menor coeficiente y que posiblemente nos facilite más las operaciones, y la despejamos, obteniendo la siguiente ecuación.

   y = 22 - 3x
El siguiente paso será sustituir cada ocurrencia de la incógnita  y  en la otra ecuación, para así obtener una ecuación donde la única incógnita sea la  x .

   4x - 3(22 - 3x) = -1
   \qquad \Rightarrow
   4x - 66 + 9x = -1
   \qquad \Rightarrow
   13x -66 = -1,
   \qquad \Rightarrow
   13x = 65
Al resolver la ecuación obtenemos el resultado  x = 5 , y si ahora sustituimos esta incógnita por su valor en alguna de las ecuaciones originales obtendremos  y = 7 , con lo que el sistema queda ya resuelto.

Igualación

El método de igualación se puede entender como un caso particular del método de sustitución en el que se despeja la misma incógnita en dos ecuaciones y a continuación se igualan entre sí la parte derecha de ambas ecuaciones.
Tomando el mismo sistema utilizado como ejemplo para el método de sustitución, si despejamos la incógnita y en ambas ecuaciones nos queda de la siguiente manera:

   \left \{
      \begin{matrix}
         y = & 22 - 3x \\
         y = & \cfrac{4x + 1}{3}
      \end{matrix}
   \right .
Como se puede observar, ambas ecuaciones comparten la misma parte izquierda, por lo que podemos afirmar que las partes derechas también son iguales entre sí.

22 - 3x = \frac{4x + 1}{3}\Rightarrow \quad\ 3(22-3x)=4x+1 \Rightarrow \quad\ 
65 = 13x \Rightarrow \quad\ x = 5
Una vez obtenido el valor de la incógnita x, se sustituye su valor en una de las ecuaciones originales, y se obtiene el valor de la y.
La forma más fácil de tener el método de sustitución es realizando un cambio para despejar x después de averiguar el valor de la y.

Reducción

Este método suele emplearse mayoritariamente en los sistemas lineales, siendo pocos los casos en que se utiliza para resolver sistemas no lineales. El procedimiento, diseñado para sistemas con dos ecuaciones e incógnitas, consiste en transformar una de las ecuaciones (generalmente, mediante productos), de manera que obtengamos dos ecuaciones en la que una misma incógnita aparezca con el mismo coeficiente y distinto signo. A continuación, se suman ambas ecuaciones produciéndose así la reducción o cancelación de dicha incógnita, obteniendo así una ecuación con una sola incógnita, donde el método de resolución es simple.
Por ejemplo, en el sistema:

   \left \{
      \begin{matrix}
         2x & + 3y & = 5 \\
         5x & + 6y & = 4
      \end{matrix}
   \right .
No tenemos más que multiplicar la primera ecuación por  -2  para poder cancelar la incógnita  y . Al multiplicar, dicha ecuación nos queda así:

    -2(2x + 3y = 5)
    \quad
    \longrightarrow
    \quad
    -4x - 6y = -10
Si sumamos esta ecuación a la segunda del sistema original, obtenemos una nueva ecuación donde la incógnita  y  ha sido reducida y que, en este caso, nos da directamente el valor de la incógnita  x :

   \begin{array}{rrcr}
      -4x & -6y & = & -10 \\
       5x & +6y & = & 4 \\
      \hline
        x &     & = & -6
   \end{array}

   x = -6
El siguiente paso consiste únicamente en sustituir el valor de la incógnita  x  en cualquiera de las ecuaciones donde aparecían ambas incógnitas, y obtener así que el valor de  y si sustituimos en la primera ecuación es igual a:

   \left  .
      \begin{array}{rrcr}
         2x & + 3y & = & 5 \\
          x &      & = & -6
      \end{array}
   \right \}
   \quad \longrightarrow \quad
   2(-6) + 3y = 5
   \quad \longrightarrow \quad
   y = \frac{17}{3}

https://www.youtube.com/watch?feature=player_embedded&v=lTRANviJWEY

No hay comentarios:

Publicar un comentario